〈技術レポート〉

ロックウールの繊維化技術

研究開発本部 浜松研究所 北 原 英 樹

1. はじめに

ロックウールとは高炉スラグの他,玄武岩な どの天然鉱石を高温で溶融し,遠心力などで吹 き飛ばして繊維状にした人造鉱物繊維であり, 用途や使用目的に応じてボード状,フェルト状, ブランケット状,帯状,筒状などに加工される。

ロックウールは優れた断熱性能,耐熱性能, 防音性能を有しており,この性能を活かして産 業用途,住宅用途,耐火被覆用途,農業資材用 途など幅広い分野に使用されていることは前号 (2014/4号)にてご紹介した。 上記性能を十分に発現させるため,多くの技 術が存在するが,本稿ではその基盤となる繊維 化技術に関して,当社が保有する技術の一部を 記載する。

2. ロックウールの製造

ロックウール製品の製造工程の一例を図1に 示す。工程は大きく溶融,繊維化・集綿,成形 工程に分かれる。各工程については前号におい て解説したが,ここでは繊維化までの工程につ いて補足説明する。

図1 ロックウール製品の製造工程

ニチアス技術時報 2015 No.1

2.1 ロックウールの原料

ロックウールはその名が示す通り,玄武岩, 輝緑岩などの天然岩石を主原料として製造され るが,国内では製鉄所の高炉からの副産物であ る高炉スラグを主原料としており,スラグウー ルとも呼ばれている。

高炉スラグ以外には, 珪石(珪砂), 天然岩石, ドロマイト, 転炉スラグなどの副原料を用い, 用途に応じた成分調整を行う。

2.2 溶融工程, 繊維化工程

原料はキュポラもしくは電気炉を用いて加熱 溶融される。熱源は前者がコークスの燃焼熱, 後者が通電による抵抗発熱であり,いずれの炉 でも原料を1500℃程度に加熱する。溶融した原 料(以降,融液と表記する)は、炉下部よりスピ ナーと呼ばれる繊維化装置上に落とされる。スピ ナーでの繊維化工程のイメージ図を図2に示す。

スピナーには高速回転するローターが複数設け られており,ローターに巻き付いた融液は高速 回転による遠心力で引き延ばされ繊維状となる。 生成した繊維はローターの周囲から出る高速空 気により捕集ネット上へ吹き飛ばされて集積し, 成型工程を経て製品となる。

3. ロックウールの繊維化技術

3.1 繊維化状況の観察

2項で記したように、繊維化とは高速で回転す るローター上に巻き付いた融液を遠心力で引き延 ばす過程である。ローターは毎分数千回転で高速 回転しており、その周速は高いもので100m/sに も達する。すなわち、繊維の生成過程を観察す るには特殊な撮影装置、計測技術が必要となる。

図3に融液が巻き付いたローター外周を, 高速 度ビデオ(シャッター速度2×10⁻⁶秒, フレー ムレート4×10⁴fps)で撮影した連続画像を示す。 なお, 下記画像は約10⁻³秒間での挙動である。

ローター上において融液が波立ち,その波の 頂点から繊維が生成している様子が確認できる。 また,繊維の先端は粒状となっていることも確 認できる。図中丸で囲んだ部分は同一起点で生 成した繊維の延伸挙動を追ったものだが,波の 頂点で生成した粒子を起点(先端)として,引 き延ばされていく過程が観察できる。観察結果 を基にした繊維生成モデルを図4に示す。

図2 スピナーでの繊維化イメージ図

図3 ローター上での融液延伸状況の観察

なお、図4に記したショットとは、繊維先端が 分離、固化した粒子であり、通常ロックウール には粒径45μm以上のショットが重量で数十% 含まれている。

図4 繊維生成モデル図

3.2 繊維化過程への流体力学の適用

前項で記した繊維化過程をコントロールする には、その現象の理解が必要となる。そこで、 類似現象を呈するRayleigh-Taylor不安定性理論¹⁾ を適用した。これは、重力場などの力が生じる 場において、密度の異なる二つの流体間におけ る、界面からの流動現象を論じた理論であり、 以前より粘性流体へ適用する研究が行われてい る²⁾。また、繊維化に適用した研究例もみられる³⁾。

この理論の身近な事象では,浴室天井からの 水滴の落下や,静置した水と油(上部に油,下 部に水)を,上下逆さにした際に生じる油中へ の水の移動挙動である。いずれも繊維生成挙動 と同様に,先端が液滴状を呈した流体が低密度 側に移動していく。表1に繊維化現象と水滴落下 現象の比較を示す。

現象	融液の繊維化	浴室天井の水滴落下
挙動		J
場の力	遠心力	重力
流体	高密度:融液 低密度:空気	高密度:水 低密度:空気

表1 類似現象の比較

この現象の支配パラメータは,粘度,表面張力, 密度,加速度である。すなわち,繊維化過程を 理解し,コントロールするには融液物性を正し く測定することが必要となる。

3.3 融液物性の測定

当社研究所には高温での液物性の測定が可能な 装置を保有しており,各物性の温度依存性を取得 している。粘度は球引上法,表面張力はリング引 上法,密度はアルキメデス2球法での測定である。

ここでは、温度に対する融液の粘度と表面張 力の測定結果を図5,6に示す。なお、図中には 一般的なロックウールに加え、グラスウールの 結果も併記している。

図6 表面張力測定結果

図に示すように、ロックウールとグラスウー ルとではその傾向が異なる。これは**表2**に示す両 者の組成の一例のように、グラスウールはロッ クウールに比べ、SiO₂ + Al₂O₃で示される繊維骨 格成分やアルカリ金属酸化物が多く、アルカリ 土類金属酸化物は少ない。すなわち、融液物性 には組成の影響が大きく、繊維化をコントロー ルするには、融液組成の設計も重要となる。

表2 各融液の組成比較(単位:mass%)

成分	ロックウール	グラスウール
$SiO_2 + Al_2O_3$	55	69
MgO+CaO	38	12
$Na_2O + K_2O$	2	18
Fe ₂ O ₃	2	0
その他	3	1

3.4 理論の製造への反映

CO₂排出量の削減が叫ばれる中,建築物など の高断熱化に向けてロックウール製品の断熱性 能を向上させる必要性が高まっている。

断熱性を向上させる,すなわち,熱伝導率を 低減するには繊維中のショット量を減らし,繊 維径を細くすることが鍵となる。前者は製品中 の繊維の割合を高め,後者は繊維本数を増やす ことであり,輻射伝熱の低下につながる。以下に, これまで述べたRayleigh-Taylor不安定性理論を 繊維径に適用した例を示す。

3.2項で記したように、繊維化のパラメータは、 融液物性(粘度,表面張力,密度)と加速度で ある。すなわち,得られる繊維径についてもこ の考えが適用でき、繊維径は融液物性と加速度 の関数として表記できる。ここでの加速度はロー ター上に巻き付いた融液が受ける遠心加速度で あり、これは、ローター径、回転数により決ま る値である。

図7に,遠心加速度と繊維径の関係における, 実測値と理論曲線の関係を示す。

図に示すように,実測値と理論曲線は良く一 致している。これは,繊維径を決めるおのおの のパラメータの影響を評価できることを意味し, 繊維化諸元の設計に役立つものとなっている。

図7 繊維径への理論の適用

3.5 繊維化シミュレーション

2項に記したように、ロックウールは高温場、 高速度場で製造されるため観察・評価技術にも 限界があり、個々のパラメータの影響が解析し 難い面がある。そのため、当社ではシミュレー ションによる繊維化技術の向上も図っている。

図8に融液が延伸する過程のシミュレー ション結果を示す。融液が重力加速度1Gで自由 落下する場合の解析結果である。

先端に生成した液滴を起点として融液が引き 延ばされ、分断に至る過程が計算機上で再現で きている。この過程を計算するには汎用流体シ ミュレーションでは不適であり、液体 – 気体界 面の詳細な解析が行える二相系格子ボルツマン 法⁴⁾による三次元シミュレーションを用いた。 ただし、この手法は膨大なメモリを必要とする ので、複数のワークステーションによる並列計 算を行える環境を整えている。

図9に融液粘度をパラメータとしたシミュ レーションで得られた,粘度と融液延伸長さの 関係を示す。図8と同様に重力加速度1Gでの計 算結果である。なお,融液延伸長さとは,ショッ トと繊維に融液が分断するまでに延伸したとき の長さであり,延伸長さ(≒繊維長)は融液粘 度と正の相関があることが予測できる。

図9 粘度と延伸長さの関係

-4 -

紹介した計算例は重力加速度1G,かつ等温場 におけるものである。一方,実現象では延伸中 の冷却に伴う粘度変化があり,加速度も10⁴Gの オーダである。熱移動とそれに伴う融液の粘度 変化も含めたシミュレーションは原理的に可能 であり,引き続き研究を続けている。このシミュ レーション技術が完成すれば,ショット径や繊 維径,繊維長などが繊維化過程のどの時点で決 まるのか,また,それを支配する因子は何か, などを解明できると考える。その結果も活かし, 断熱性能を一層向上させた製品開発などに結び 付けていく。

4. おわりに

ロックウール製品は, CO₂削減の観点からも 注目されてきており, また, 高炉スラグなどの 製鉄時に排出される副産物を原料として使用で きる利点もある。今後, その需要は益々増大す ると予想され, 断熱性能や耐熱性能などの物性 向上も同時に求められてくる。

当社としても, 鋭意研究を進めることで, 今 回ご紹介した基盤技術をさらに高め, より一層 地球環境に貢献する製品を提供していきたい。

なお,本稿には信州大学との共同研究におい て得られた成果も含まれている。共同研究者で ある信州大学工学部機械システム工学科松原雅 春教授,吉野正人教授に感謝の意を表する。

参考文献

- S. Chandrasekhar, Hydrodynamic and hydro-magnetic stability, Chap. 10 (1961) 428-480
- R. Menicoff, R. Mjoisness, D. Shrap, C. Zemach, *The Physics of Fluids*, Vol.20 (1977), 2000-2004
- 3) B. Sirok, B. Bizjan, A. Orbanic, T. Bajcar, *Cemical Engneering Research and Design*, Vol.92 (2014), 80-90
- T. Inamoto, T. Ogata, S. Tajima, N. Konishi, Journal of Computational Physics, Vol.198 (2004), 628-644

筆者紹介

研究開発本部 浜松研究所 無機繊維の研究開発に従事

北原英樹